ON THE THEORY OF MOTIONS OF THE PRANDTL-MEYER TYPE

(A teoril dyizhenil tipa prandtila-maiera)

```
PMM Vol.24, No.1, 1960, pp. 165-166
    K.B. PAVLOV
    (Moscow)
(Received 28 July 1959)
```

Planar motion of the Prandtl-Meyer type is self-similar: by introducing a cylindrical system of coordinates (in which the z-axis coincides with the edge of the sharp angle at the surface of the body over which the gas flows) all quantities become functions of ϕ only. Flows in which the initial distribution of parameters in the stream moving toward the edge is non-uniform may be of interest; in particular, such flows may occur in the presence of a bow shock wave in front of a body whose intensity decreases with distance from the body.

If the initial distribution of parameters is considered to be known and to have almost constant values, the corresponding problem can be solved by the method of perturbations

$$
\begin{equation*}
v_{r}(\varphi)+v_{r}^{\prime}(r, \varphi), \quad v_{\varphi}(\varphi)+v_{\varphi}^{\prime}(r, \varphi) \tag{1}
\end{equation*}
$$

taking the solution of a self-similar problem [1] for the zeroth approximation

$$
\begin{gather*}
v_{\varphi}=c=c \cos n \varphi, \quad p=p_{\bullet}(\cos n \varphi)^{\lambda} \quad\left(\lambda=\frac{1+n^{2}}{n^{2}}\right) \\
v_{r}=\frac{c}{n} \sin n \varphi, \quad \rho=\rho_{\bullet}(\cos n \varphi)^{\mu} \quad\left(\mu=\frac{i-n^{2}}{n^{2}}\right) \quad\left(n^{2}=\frac{\gamma-1}{r+1}\right) \tag{2}
\end{gather*}
$$

Here γ is the ratio of specific heats, the asterisk denotes the critical value of the starred quantity, and the rest of the designations are well-known. For small values of $v_{r}^{\prime}, v_{\phi}^{\prime}, \rho^{\prime}$ one can obtain the system of linear equations

$$
\begin{gather*}
v_{r} \frac{\partial \rho^{\prime}}{\partial R}+v_{\varphi} \frac{\partial \rho^{\prime}}{\partial \varphi}+\rho \frac{\partial v_{z}^{\prime}}{\partial R}+\rho \frac{\partial v_{\varphi}^{\prime}}{\partial \varphi}=\frac{d \ln \rho}{d \varphi} v_{\varphi} \rho-\frac{d \rho}{d \varphi} v_{\varphi}^{\prime}-\rho v_{r}^{\prime} \\
v_{r} \frac{\partial v_{r}^{\prime}}{\partial R}+v_{\varphi} \frac{\partial v_{r}^{\prime}}{\partial \varphi}+\frac{v_{\varphi}^{2}}{\rho} \frac{\partial \rho^{\prime}}{\partial R}=v_{\varphi} v_{\varphi}^{\prime} \quad(R=\lg r) \tag{3}\\
v_{r} \frac{\partial v_{\varphi}^{\prime}}{\partial R}+v_{\varphi} \frac{\partial v_{\varphi}^{\prime}}{\partial \varphi}+\frac{v_{\varphi}^{2}}{\rho} \frac{\partial \rho^{\prime}}{\partial \varphi}=\frac{d \ln \rho}{d \varphi} v_{\varphi} v_{\varphi}^{\prime}+\frac{v_{\varphi}}{\rho}\left(v_{\varphi} \frac{d \ln \rho}{d \varphi}-2 \frac{d v_{\varphi}}{d \varphi}\right) \rho^{\prime}-v_{\varphi} v_{r}^{\prime}
\end{gather*}
$$

Solving Equation (3) for derivatives with respect to R, the system obtained can be written in the form of the vector equation [2]

$$
\begin{equation*}
\frac{\partial \mathrm{x}}{\partial R}=A \frac{\partial \mathrm{x}}{\partial \varphi}+\Psi \quad\left(x_{1}=p^{\prime}, x_{2}=v_{r}^{\prime}, x_{3}-v_{\varphi}^{\prime}\right) \tag{4}
\end{equation*}
$$

where $A=\left\|a_{i j}(\phi)\right\|$ is the matrix

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{ccc}
\frac{-v_{\varphi} v_{r}}{v_{r}^{2}-v_{\varphi}^{2}} & \frac{\rho v_{\varphi}}{v_{r}^{2}-v_{\varphi}^{2}} & \frac{-\rho v_{r}}{v_{r}^{2}-v_{\varphi}^{2}} \tag{5}\\
\frac{v_{\varphi}{ }^{3}}{\rho\left(v_{r}^{2}-v_{\varphi}{ }^{2}\right)} & \frac{-v_{r} v_{\varphi}}{v_{r}^{2}-v_{\varphi}^{2}} & \frac{v_{\varphi}{ }^{2}}{v_{r}^{2}-v_{\varphi}{ }^{2}} \\
-\frac{v_{\varphi}^{2}}{\rho v_{r}} & 0 & -\frac{v_{\varphi}}{v_{r}}
\end{array}\right\|
$$

We will introduce the vector y in place of x by means of the relations

$$
\mathbf{x}=B \mathbf{y}, \quad \mathrm{y}=B^{-1} \mathbf{x}
$$

where $B=\left\|b_{i j}(\phi)\right\|$ is a matrix such that Det $|B| \neq 0$, and B^{-1} is the inverse matrix; we have

$$
\begin{equation*}
B \frac{\partial \mathrm{y}}{\partial R}=A B \frac{\partial \mathrm{y}}{\partial \varphi}+\Psi_{1}, \quad \frac{\partial \mathrm{y}}{\partial R}=B^{-1} A B \frac{\partial \mathrm{y}}{\partial \varphi}+\Psi^{2} \tag{6}
\end{equation*}
$$

After finding the eigenvalues λ_{k} of the characteristic equation $\operatorname{Det}|A-\lambda|=0$

$$
\begin{equation*}
\lambda_{1}=0, \quad \lambda_{2}=-\frac{v_{\varphi}}{v_{r}}, \quad \lambda_{3}=-\frac{2 v_{r} v_{\varphi}}{v_{r}^{2}-v_{\varphi}^{2}} \tag{7}
\end{equation*}
$$

the elements $b_{i k}$ can be determined from the system

$$
\sum_{j=1}^{3}\left(a_{i j}-\delta_{i j} \lambda_{k}\right) b_{j k}=0, \quad \delta_{i j}=\left\{\begin{array}{ll}
0 & (i \neq i) \tag{8}\\
1 & (i=i)
\end{array} \quad\binom{i=1,2,3}{k=1,2,3}\right.
$$

such that the matrix $B^{-1} A B$ will have the diagonal form

$$
\left\|b_{j k}\right\|=\left\|\begin{array}{ccc}
-\frac{\rho}{v_{\varphi}} & 0 & \frac{p}{v_{\varphi}} \frac{v_{r}{ }^{2}+v_{\varphi}{ }^{2}}{v_{t}{ }^{2}-v_{\varphi}{ }^{2}} \tag{9}\\
0 & -\frac{v_{r}}{v_{\varphi}} & -\frac{2 v_{r} v_{\varphi}}{v_{r}{ }^{2}-v_{\varphi}{ }^{2}} \\
1 & 1 & 1
\end{array}\right\|
$$

The system (6) can be reduced to the following form:

$$
\frac{\partial y_{1}}{\partial R}=-y_{1}-\left(1-n^{2}\right) y_{2}-\left(1-\frac{2 n^{2}}{1-n^{2} \operatorname{ctg}^{2} n \varphi}\right) y_{8}
$$

$$
\begin{gathered}
\frac{\partial y_{2}}{\partial R}+\frac{n}{\operatorname{tg} n \varphi} \frac{\partial y_{2}}{\partial \varphi}=n^{2}\left(1-\frac{2}{1+\left(n^{2}-1\right) \cos ^{2} n \varphi}\right) y_{2} \\
\frac{\partial y_{3}}{\partial R}+\frac{2 n \operatorname{tg} n \varphi}{\operatorname{tg}^{2} n \varphi-n^{2}} \frac{\partial y_{8}}{\partial \varphi}=-\frac{\left(1-n^{2}\right)\left[1-\left(n^{2}+1\right) \cos ^{2} n \varphi\right]}{1+\left(n^{2}-1\right) \cos ^{2} n \varphi} y_{2}+\frac{2 n^{2}}{1-\left(n^{2}+1\right) \cos ^{2} n \varphi} y_{3}
\end{gathered}
$$

For the solution of concrete problems, y_{2}, y_{3} and y_{1} are successively determined from the second, third and first of these equations.

BIBLIOGRAPHY

1. Landau, L.D. and Lifshitz, E. M., Mekhanika sploshnyhh sred (Mechanics of continuous media). Gostekhteoretizdat, 1954.
2. Smirnov, V.I., Kura vysshei mateatiki (Course in higher aathanatics). Gostekhteoretizdat, Vol. 4, 1953.
